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Darcy’s law seems to end the laminar flow problem of porous media. However, in recent years, many scholars have found
that the resistance and velocity of Darcy’s law are nonlinear, indicating that the laminar flow mechanism of porous
media is still unclear. Further research is necessary and urgent. Based on the shortcomings of the traditional tube flow
model, we consider the seepage resistance of porous media as the sum of the numerous average minor resistances and
theoretically derive the new resistance formula for laminar flow. Using the experimental data of Darcy, Charles Ritter,
and Baǧcı et al., the average local resistance coefficient of the porous medium was determined to be 200. Compared
with the classical Kozeny–Carman equation and the Ergun equation, the new equation has the best consistency and
the least error in all experiment data predictions. However, because the porous media is complex and highly nonlinear,
our equation and coefficient still need lots of experimental data and other ways to validate the results.

KEY WORDS: porous medium, viscous dissipation, conduction limit, channel partially filled with a
porous medium

1. INTRODUCTION

Henry Darcy, a French hydraulic engineer, put forward Darcy’s law through a paper (1856) on large number of sand
seepage experiments, which laid the theoretical foundation of porous media and was widely used in engineering.
However, due to the randomness of the porous media structure and the nonlinearity of the flow, researchers have long
found that Darcy’s law can only be applied to porous media flow with slow velocity (Re< 1).

Dupuit (1863) revised Darcy’s law, for the first time considering the difference between apparent velocity and
actual velocity. Later, Slichter (1902), Terzaghi (1925), and Darapsky and Müller (1915) began to introduce viscosity
and capillary diameter, focusing on the effect of porosity. However, it was not until Blake (1922) adopted dimension-
less criteria and semi-empirical analysis that a better correlation was obtained, as shown in Eq. (1):

v =
ε3

kµS2

∆Pg

L
(1)

where∆P is the pressure drop (Pa),v is the superficial or “empty-tower” velocity (m/s),ε is the porosity of the bed,
k is the shape coefficient of the cross-section of the channel,µ is the viscosity of the fluid (Pa.s),S is the particle
surface area (m2), L is the total height of the bed, andg is gravitational acceleration (m/s2).
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Based on this, Kozeny and Carman (1938) obtained the widely used Kozeny–Carman equations as shown in
Eq. (2) by considering factors such as specific surface area and tortuosity to further refine Eq. (1):

∆P

L
=

180µ
Φ2

sD
2
p

1− ε2

ε3
v (2)

whereΦs is the sphericity of the particles in the packed bed andDp is the diameter of the volume equivalent spherical
particle (m).

Equation (2) is suitable for laminar flow in porous media with Reynolds number less than 1, and has been widely
used in many fields. Chapuis and Aubertin (2003) deeply analyzed a large number of data and found that Kozeny–
Carman equation is correct for most soils. The problem arises in the case of anisotropic or unsaturated porous media,
or when the specific surface area of porous media is not accurately measured. The tortuosity term of Kozeny–Carman
equation was handled by Nooruddin and Hossain (2012) in a more robust manner, and the equation demonstrated its
global applicability and significant improvement in identifying a hydraulic flow unit (HFU).

Wan et al. (2013) analyzed the experimental data of Darcy in that year and found that the permeability coefficient
K of porous media gradually decreased with the increase of Reynolds number and the permeability coefficientK
was not equal to a constant. That is to say, Darcy’s seepage experiment did not obey the linear seepage law. There-
fore, Wan et al. (2013) was further confirmed by his own experiments. Shi (2017) revised Darcys law based on the
seepage equation of soft soil and established a seepage model for low-permeability soft soil considering pore size
distribution. Zheng et al. (2017) and Wang et al. (2017) deduced new resistance formulas from the traditional and
fractal theory, respectively, based on the new pore throat model of staggered stacking porous media. It was found that
the Ergun equation and the new equation had larger prediction errors under the condition of low Reynolds number
flow in porous media.

In recent years, with the development of computer software and hardware computational fluid dynamics (CFD)
are more and more convenient and become a useful way of conducting research. Zeidan (Zeidan et al., 2019; Zei-
dan, 2011a) numerically studied the two-dimensional two-phase flow of gas-liquid mixture using a mixed model.
Zeidan (2016, 2011b) also systematically evaluated model equations and numerical methods through a series of
numerical experiments. Especially Zeidan et al. (2007) proposed a new model and solution method for two-phase
compressible flow. The characteristics of the model include the existence of real eigenvalues and a complete set of
independent eigenvectors. Peshkov and Romenski (2016) discussed a pure hyperbolic transformation of the parabolic
Navier–Stokes equation. It is proved that Newtons law of viscosity can be obtained as the steady-state limit under the
framework of hyperbolic theory.

In summary, for porous media, even in the case of laminar flow, its resistance law and characteristics are still
not well understood, and further research is still necessary. In this paper we propose a minor resistance model based
pore throat unit, which has usually been used to study the resistance of porous media in recent years. The laminar
flow resistance loss is assumed as completely caused by local loss according the minor resistance model, the calcu-
lation formula of the laminar flow resistance of the porous medium is obtained, and the average local resistance loss
coefficient is determined.

2. THEORETICAL ANALYSIS OF LAMINAR RESISTANCE IN POROUS MEDIA

2.1 Local Resistance Model for Porous Media

2.1.1 Porous Media Characteristic Unit

Most of the porous media in nature are random and highly complex structures, but they can be considered isotropically
in statistical terms. Therefore, it can be assumed that such a porous medium is formed by stacking spherical particles
of equivalent diameter (Dp), and the characteristic structural unit adopts a well-aligned pore-throat model, which
is currently widely used. Its structure is shown in Fig. 1, and the main flow direction of the fluid is shown by the
arrow in the figure. Assuming that the contact between the particles is relatively tight, the structural unit lengthl is
approximately equal to the average particle diameterDp.
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FIG. 1: Pore throat characteristic unit

2.1.2 Local Resistance Model of Porous Media

Engels analyzed the disappearance of mechanical motion in the dialectics of nature. He pointed out that friction and
collision are essentially the same, but only different in degree. Friction can be seen as a series of small collisions, and
collisions can be seen as a violent friction. This statement actually points out that the essence of viscous resistance
and inertial resistance is the same. Therefore, the resistance of the porous medium is completely regarded as the minor
resistance loss. Based on the structural model of Fig. 2, the fluid in the aligned model flows from A to B and passes
through a sudden expansion and a sudden contraction. The drag coefficient of the sudden expansion and contraction
in the laminar flow is inversely proportional to the Reynolds number (Re), but the proportional coefficient is different
and not defined. Here we think that the resistance of the porous medium is composed of the two average minor losses,
its inverse proportional coefficient is denoted with letterE, and the average minor loss coefficientζ is as follows:

ζ =
E

Re
(3)

2.2 Derivation of Laminar Flow Resistance Formula for Porous Media

The porous media resistance is derived through the following ways. Based on pore throat unit and minor drag model,
the pressure drop is got from the fluid dynamics. According to the average hydraulic radius model, the equivalent
diameter in the Reynolds number is obtained. The average velocity is expressed in terms of apparent velocity and

FIG. 2: Local resistance model
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porosity. Substitute the equivalent diameter and the apparent velocity into the pressure drop. The pressure drop divided
by the length of pore throat unit is the resistance of porous media.

According to the assumption of minor resistance, the total resistance loss in the characteristic unit of porous
media is equal to the sum of all minor resistance losses, that is

∆P =
n∑

i=1

ζi
ρv̄2

i

2
= ζ1

ρv̄2
1

2
+ ζ2

ρv̄2
2

2
(4)

whereρ is the density of fluid (kg/m3) andi is the number of the minor loss.
According to the aligned pore throat model, the minor loss of the characteristic unit is composed of the sudden

expansion (the inlet) and the sudden contraction (the outlet), which is equal to the sum of two average local losses
from the assumption (ζ1 = ζ2 = ζ). Therefore, Eq. (3) is substituted for Eq. (4) to obtain Eq. (5).

∆P = ζ1
ρv̄2

1

2
+ ζ2

ρv̄2
2

2g
= 2

E

Re
ρv̄2

2
(5)

Further derive to draw

∆P = 2
E

(ρv̄d)/µ
· ρv̄2

2
=

Eµv̄

d
(6)

According to the average hydraulic radius model, the equivalent diameterd of the channel of porous media is as
follows:

d = 4R = 4
Effective flow cross-sectional area

Wetted perimeter
=

Effective flow volume
Total wetted surface area

= 4
Void volume
Bed volume

/
Wetted area
Bed volume

= 4
ε

a′
(7)

wherea′ is bed wetted specific area (m2/m3).
The bed wetted specific areaa′ can be expressed by the specific area of particlesav and porosity in the bed. The

relationship between them is as follows:

a′ =
Wetted surface area

Bed volume
=

Particle surface area in bed
Particles volume in bed

/(1− ε)

=
Particle surface area in bed

Particles volume in bed
(1− ε) = av(1− ε) (8)

The equivalent diameter of particlesDp can be expressed by the specific surface area of particlesav. If there are
N particles in the bed, the equivalent diameter of particles can be expressed by Eq. (9).

av =
Particles surface area in bed

Particles volume in bed
=

NπD2
p

NπD3
p/6

⇒ Dp =
6
av

(9)

Combining Eqs. (7)–(9), the hydraulic radius can be expressed as Eq. (10).

d = 4R =
2εDP

3(1− ε)
(10)

Then Eq. (9) is substituted for Eq. (6) to obtain Eq. (11).

∆P =
Eµv̄

2[εDp/3(1− ε)]
=

3Eµ(1− ε)v̄
2εDp

(11)

Special Topics & Reviews in Porous Media — An International Journal



Derive a New Drag Formula on Porous Media Laminar Flow 25

The average velocity of fluid in porous media can be expressed by apparent velocity and porosity. The equation
is

v̄ =
v

ε
(12)

Eq. (12) is substituted for Eq. (11) to obtain Eq. (13).

∆P =
3Eµ(1− ε)v

2ε2Dp
(13)

Because the model assumes thatl is approximately equal to average particle diameterDp, the resistance loss per
unit length is

∆P

l
=

3Eµ(1− ε)v
2ε2D2

p

(14)

2.3 Darcy Origin Data

In 1856, Darcy conducted a series of sand seepage experiments in the fountain project in Dijon, France, and found
Darcy’s law. Table 1 shows the four sets of raw experimental data measured by Darcy on October 29 and 30, and
December 6, 1855. The second and sixth columns in the table are flow rates, the third and seventh columns are ex-
perimentally measured total pressure drops, and the fourth and eighth columns are experimentally measured pressure
drops per unit bed height. The calculation parameters in the following tables are as follows: the inner diameter of the
bed section is 0.35 m, the porosity is 0.38, the particle diameter is 0.2 mm, the viscosity of water is 0.001 Pa.s, and
the density of water is 1000 kg/m. It is necessary to mention that the original text of Darcy does not clearly specify
the particle diameter. It only shows that the sand is filtered through a 0.77 mm sieve. It can only be inferred that the

TABLE 1: Darcy original data on pressure drop and discharge

Mean discharge (L/min) Mean pressure (m) Mean pressure (Pa/m)

First series (bed height 0.58 m)

3.60 1.11 18,755.17
7.65 2.36 39,875.86
12.00 4.00 67,586.21
14.28 4.90 82,793.10
15.20 5.02 84,820.69
21.80 7.63 128,920.69
23.41 8.13 137,368.97
24.50 8.58 144,972.41
27.80 9.86 166,600.00
29.40 10.89 184,003.45

Second series (bed height 1.14 m)

2.66 2.60 22,350.88
4.28 4.70 40,403.51
5.26 7.71 66,278.95
8.60 10.34 88,887.72
8.90 10.75 92,412.28
10.40 12.34 106,080.70

Third series (bed height 1.31 m)

2.13 2.57 19,225.95
3.90 5.09 38,077.86
7.25 9.46 70,769.47
8.55 12.35 92,389.31

Fourth series (bed height 1.70 m)
5.25 6.98 40,237.65
7.00 9.95 57,358.82
10.30 13.93 80,302.35
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average particle size of the particles is less than 0.77 mm. As we know, the effect of particle diameter on drag cal-
culation is generally inverse square ratio. It can be said that different particle diameter will eventually lead to a great
difference between drag calculation and experimental value. Therefore, in order to determine the average diameter of
the particles, we use the widely applicable Kozeny–Carman equation and the Ergun equation to try different particle
diameters until the calculated values of the two equations are very close to the experimental values. The particle
diameter was finally obtained to be 0.2 mm.

2.4 Determining E in Eq. (14) and Comparison with Classical Formula

2.4.1 Determining E in Eq. (14)

The value of the constantE can be calculated by substituting the velocity and

∆P

l
= 300

µ(1− ε)v
ε2D2

p

∆P

l
= 300

µ(1− ε)v
ε2D2

p

unit pressure drop of Darcy origin data into Eq. (14). Since the first group of data of Darcy is less affected by external
interference, we select them to calculate theE value. The results are shown in Table 2. The column “Computed
value” in Table 2 shows that theE values range from 186.69 to 224.27, with an average of 205. Thus letE equals
200, substitute theE into Eq. (14) to obtain Eq. (15). The calculated unit pressure drop is in the column “Our equation
value” of Table 2, and the error between the calculated and experimental values is in the seventh column “Error.” It
can be seen that the maximum error of Eq. (14) is 10.8%, which is smaller than that of the Kozeny–Carman equation
and the Ergun equation, while the maximum error of the Ergun equation is 25.9%. Therefore, for the first set of
experimental data of Darcy, the Eq. (14) derived in the paper is more accurate than the classical Kozeny–Carman
equation and Ergun equation when theE value is 200.

∆P

l
= 300

µ(1− ε)v
ε2D2

p

(15)

2.4.2 Further Verification and Comparison of Eq. (14)

Equation (14), the Kozeny–Carman equation, and the Ergun equation are applied to the other three sets of data from
Darcy. The calculation results and corresponding errors are shown in Table 3. From the error in Table 3, the calculation
errors of the three equations are all too large, the maximum error is 63.7%, and the minimum error is also 27.2%.

TABLE 2: Determination of the average local resistance coefficient

Meanpressure
(Pa/m)

Kozeny–Carman
(Pa/m)

Ergun equation
(Pa/m)

Our equation
(Pa/m)

E in our equation

Darcy
experiment value

Equation
value

Error
Equation

value
Error

Our equation
value

Error
Computed

value
Average

18,755.17 19,669.38 0.049 19,707.87 0.051 20,092.37 0.071 186.69

The average
value ofE is
205. TakeE
equals 200.

39,875.86 41,797.43 0.048 35,004.99 0.122 42,696.30 0.071 186.79
67,586.21 65,564.59 0.030 55,064.82 0.185 66,974.58 0.009 201.83
82,793.10 78,021.86 0.058 65,623.83 0.207 79,699.75 0.037 207.76
84,820.69 83,048.48 0.021 69,893.22 0.176 84,834.47 0.000 199.97
128,920.69 119,109.01 0.076 100,668.90 0.219 121,670.49 0.056 211.92
137,368.97 127,905.59 0.069 108,215.55 0.212 130,656.25 0.049 210.28
144,972.41 133,861.04 0.077 113,333.52 0.218 136,739.77 0.057 212.04
166,600.00 151,891.30 0.088 128,871.31 0.226 155,157.78 0.069 214.75
184,003.45 160,633.25 0.127 136,428.06 0.259 164,087.73 0.108 224.27
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TABLE 3: Three equations’ prediction and their errors

Meanpressure (Pa/m) Kozeny–Carman (Pa/m) Ergun equation (Pa/m) Our equation (Pa/m)
Darcy experiment value Equation value Error Equation value Error Equation value Error

Second
series

22,350.88 14,533.48 0.350 12,132.25 0.457 14,846.03 0.336
40,403.51 23,384.70 0.421 19,541.66 0.516 23,887.60 0.409
66,278.95 28,739.15 0.566 24,031.46 0.637 29,357.19 0.557
88,887.72 46,987.96 0.471 39,376.28 0.557 47,998.45 0.460
92,412.28 48,627.07 0.474 40,757.80 0.559 49,672.81 0.462
106,080.70 56,822.65 0.464 47,673.42 0.551 58,044.64 0.453

Third
series

19,225.95 11,637.71 0.395 9711.57 0.495 11,887.99 0.382
38,077.86 21,308.49 0.440 17,802.25 0.532 21,766.74 0.428
70,769.47 39,611.94 0.440 33,166.05 0.531 40,463.81 0.428
92,389.31 46,714.77 0.494 39,146.08 0.576 47,719.39 0.483

Fourth
series

40,237.65 28,684.51 0.287 23,985.61 0.404 29,301.38 0.272
57,358.82 38,246.01 0.333 32,017.20 0.442 39,068.51 0.319
80,302.35 56,276.27 0.299 47,211.97 0.412 57,486.52 0.284

It can be seen that the calculated values are smaller than the experimental values. The reason here can be attributed
to the experiment itself. According to the original record, due to the influence of water hammer caused by the street
fountain in the water supply system, the original paper clearly indicates that there are almost very strong oscillations
when measuring these three sets of data. Despite this, it can be seen from the calculation results of the three equations
that the prediction of Eq. (14) is still the best, followed by the Kozeny–Carman equation, and the Ergun equation is
the worst.

In order to make up for the shortcomings of the last three groups of experiments, Charles Ritter carried out new
tests on the above experimental devices on February 17 and 18, 1856. The test data are shown in Table 4. This data
have little external influence. From the calculation results of the three equations, it can be seen that the error of Eq.
(14) is the smallest, while the error of Kozeny–Carman equation is slightly larger. The Ergun equation errors are
between 20% and 30%.

Therefore, it can be seen from this comparison that when the percolation Reynolds number of the porous medium
is less than 1, both the Kozeny–Carman equation and Eq. (14) are applicable, but the Ergun equation has a large
error.

TABLE 4: Comparison with experiment from Charles Ritter

Meanpressure (Pa/m) Kozeny–Carman (Pa/m) Ergun equation (Pa/m) Our equation (Pa/m)
Darcy experiment value Equation value Error Equation value Error Equation value Error

Charles
Ritter ex-
periment

on
Feb. 17
and 18,
1856

116,530.91 102,717.86 0.119 86,647.88 0.256 104,926.84 0.100
114,749.09 99,986.00 0.129 84,316.24 0.265 102,136.24 0.110
112,076.36 98,346.89 0.123 82,917.97 0.260 100,461.87 0.104
110,561.82 95,068.66 0.140 80,123.03 0.275 97,113.14 0.122
109,670.91 98,893.26 0.098 83,384.00 0.240 101,019.99 0.079
86,329.09 81,409.37 0.057 68,500.48 0.207 83,160.11 0.037
75,192.73 66,110.96 0.121 55,527.28 0.262 67,532.70 0.102
59,780.00 53,544.42 0.104 44,905.57 0.249 54,695.91 0.085
51,494.55 43,163.36 0.162 36,154.81 0.298 44,091.60 0.144
49,712.73 47,261.14 0.049 39,606.50 0.203 48,277.51 0.029
26,549.09 24,586.72 0.074 20,549.07 0.226 25,115.47 0.054
26,549.09 22,674.42 0.146 18,946.50 0.286 23,162.04 0.128
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2.5 Verification of near Darcy Flow Regime

For providing a more general example we have added two sets of additional experimental data in the Darcy regime
published by Bǎgcı et al. (2014) in the journalTransport in Porous Mediain 2014. The experimental parameters are
as follows: The inner diameter of the bed section is 51.4 mm. The diameter of the steel balls are 1.14 and 3.03 mm,
respectively, and their corresponding porosities are 35.01% and 35.58%. The viscosity of water is 0.001 Pa.s, and the
density of water is 1000 kg/m. In the following, only the speed and pressure drop experimental data of the near Darcy
regime are selected for comparison.

Figure 3 shows the compared result of the formulas with the two sets of experiment data (1.14 and 3.03 mm steel
balls, respectively). Figure 3(a) is for the steel balls of 1.14 mm diameter, and Fig. 3(b) is for 3.03 mm diameter balls.
In Fig. 3(a), the Ergun equation has the maximum deviation from experimental value and the Carman equation fit best
with the experiment. Eq. (14) in the paper is in between, and the average error is 12.6%. In Fig. 3(b), Eq. (14) is 6%
of average error and most consistent with the experimental value. The Carman equation is next, and its average error
is 15%. Ergun’s average error is 18%. Consequently, Eq. (14) has the better prediction of the two sets of experimental
data when the Reynolds number is between 1 and 40. Combined with Darcy’s experimental data, Eq. (14) may be
applied to the flow in the natural sand and artificial porous media paced with small steel balls. Its Reynolds number
can extend to 40. This indicates the minor resistance model based on pore throat unit is reasonable to some extent in
quality and in quantity. However, the formula is derived from the simplified hypothesis of minor resistance, which is
different from the real porous media. It needs lots of experimental data and other ways to verify its applicability in
the future.

3. CONCLUSION

1. Based on the pore throat model and the local resistance hypothesis, a new formula for calculating the resistance
of porous media is derived. The formula is as follows.

∆P

l
= 300

µ(1− ε)v
ε2D2

p

This formula is superior to the Kozeny–Carman equation and the Ergun equation for the experimental data
from Darcy and Charles Ritter in the Darcy regime, as well as suitable to the ones of Baǧcı et al. (2014) in the
near Darcy flow regime. However, as a result of the simplifying assumption of minor resistance, the formula’s

(a) (b)

FIG. 3: Comparison the formulas with two sets of experiment data: (a) 1.14 mm steel ball and (b) 3.03 mm steel ball
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application needs to be tested with lots of experimental data and other ways such as numerical methods for
the future studies.

2. Studies have shown that it is reasonable to assume that the resistance of porous media is the sum of many
minor resistances, allowing a deeper understanding of the mechanism of internal resistance of porous media.
At the same time, the average minor resistance coefficient of the porous medium was determined to be 200.
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